Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
One of the goals of undergraduate education is to prepare students to adapt to a challenging career that requires continual learning and application of knowledge. Working professionals should have deep conceptual knowledge that they can apply in a range of contexts and possess the attitudes and skills of lifelong learners. The literature suggests the concept of Adaptive Expertise (AE), which can be defined as the ability to apply and extend knowledge and skills to new situations, describes some of these characteristics. Survey data concerning the level of AE displayed by various populations is extremely limited in most contexts, be it education or working professionals. As such, data concerning the level of adaptiveness displayed among various groups needs to be measured if activities designed to promote the development of AE are to be created and then tested in terms of their efficacy. This investigation provides this critical baseline data for future studies as we track the AE development of individual, first-year college students through their undergraduate program of study, with a focus on low-income students as a means to support retention. In this work, we assessed adaptive expertise among low-income STEM students using surveys and interviews. Low-income STEM students from various stages of their four year undergraduate program (n=208) completed an adaptive expertise survey in spring 2022. Following the survey, 24 of the low-income students (6 per year, 3 male, 3 female) were selected for targeted qualitative interviews to better understand the differences displayed by low and high AE students. Survey results from prior studies were used to draw comparisons between adaptiveness of low-income and non-low-income students. Results of the AE survey indicated no statistically-significant differences between low-income and non-low-income first-year students in terms of their level of adaptiveness. In addition, the level of AE displayed by low-income students increased through the program in a manner similar to that of non-low-income STEM students. Themes that emerged from the interviews included a general understanding of the importance and likelihood of learning new concepts continually while working in a professional role, and that students expressed growth in understanding the acceptance of reaching out for assistance from other students and faculty after exploring information on their own as they work through challenges in their academic assignments. Two dominant and divergent metacognitive processes were also observed: teaching/explaining concepts to others (highly adaptive) or primarily relying on exam/course grades for feedback on learning (low adaptiveness). Data gathered from interviews demonstrate the need for a greater emphasis on metacognitive practice to promote various aspects of AE.more » « less
-
Abstract The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of ℒ = 2 × 1034cm-2s-1was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of ℒ = 2 × 1034cm-2s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector.more » « less
An official website of the United States government

Full Text Available